12,412 research outputs found

    Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations

    Full text link
    We present a theoretical interpretation of a recent experiment presented in ref. \cite{Zwierlein06} on the density profile of Fermi gases with unbalanced spin populations. We show that in the regime of strong interaction, the boundaries of the three phases observed in \cite{Zwierlein06} can be characterized by two dimensionless numbers η_α\eta\_\alpha and η_β\eta\_\beta. Using a combination of a variational treatment and a study of the experimental results, we infer rather precise bounds for these two parameters.Comment: 4 pages, 2 figure

    Attractive Fermi gases with unequal spin populations in highly elongated traps

    Full text link
    We investigate two-component attractive Fermi gases with imbalanced spin populations in trapped one dimensional configurations. The ground state properties are determined within local density approximation, starting from the exact Bethe-ansatz equations for the homogeneous case. We predict that the atoms are distributed according to a two-shell structure: a partially polarized phase in the center of the trap and either a fully paired or a fully polarized phase in the wings. The partially polarized core is expected to be a superfluid of the FFLO type. The size of the cloud as well as the critical spin polarization needed to suppress the fully paired shell, are calculated as a function of the coupling strength.Comment: Final accepted versio

    Theory of the striped superconductor

    Full text link
    We define a distinct phase of matter, a "pair density wave" (PDW), in which the superconducting order parameter ϕ\phi varies periodically as a function of position such that when averaged over the center of mass position, all components of ϕ\phi vanish identically. Specifically, we study the simplest, unidirectional PDW, the "striped superconductor," which we argue may be at the heart of a number of spectacular experimental anomalies that have been observed in the failed high temperature superconductor, La2−x_{2-x} Bax_xCuO4_4. We present a solvable microscopic model with strong electron-electron interactions which supports a PDW groundstate. We also discuss, at the level of Landau theory, the nature of the coupling between the PDW and other order parameters, and the origins and some consequences of the unusual sensitivity of this state to quenched disorder.Comment: 16 pages, 3 figures, 1 table; Journal ref. adde

    Fermi-liquid effects in the Fulde-Ferrell-Larkin-Ovchinnikov state of two-dimensional d-wave superconductors

    Full text link
    We study the effects of Fermi-liquid interactions on quasi-two-dimensional d-wave superconductors in a magnetic field. The phase diagram of the superconducting state, including the periodic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in high magnetic fields, is discussed for different strengths of quasiparticle many-body interactions within Landau's theory of Fermi liquids. Decreasing the Fermi-liquid parameter F0aF_0^a causes the magnetic spin susceptibility to increase, which in turn leads to a reduction of the FFLO phase. It is shown that a negative F0aF_0^a results in a first-order phase transition from the normal to the uniform superconducting state in a finite temperature interval. Finally, we discuss the thermodynamic implications of a first-order phase transition for CeCoIn5_5.Comment: published version; removed direct comparison with experiment for the upper critical field, as required by the referee

    Finite-momentum Bose-Einstein condensates in shaken 2D square optical lattices

    Full text link
    We consider ultracold bosons in a 2D square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. It is therefore necessary to account for higher-order hopping terms, which are renormalized differently by the shaking, and introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates, with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott-insulator and the different superfluid phases, and present the time-of-flight images expected to be observed experimentally. Our results open up new possibilities for the realization of bosonic analogs of the FFLO phase describing inhomogeneous superconductivity.Comment: 7 pages, 7 figure

    Faint Field Galaxies Around Bright Stars - A New Strategy for Imaging at the Diffraction Limit

    Get PDF
    This paper presents a new strategy for observing faint galaxies with high order natural guide star systems. We have imaged 5 high galactic latitude fields within the isoplanatic patch of bright stars (8.5 < R < 10.3 mag). The fields provide a rich set of faint field galaxies that are observable with a natural guide star adaptive optics system on a large telescope. Due to the small fields of many AO science cameras, these preliminary images are necessary to identify candidate galaxies. We present the photometry and positions for 78 objects (at least 40 galaxies) near five bright stars, appropriate for diffraction limited studies with the Keck and other AO systems on large ground-based telescopes. The K band seeing conditions in each field were excellent (0.4" - 0.7") allowing us to identify stars and estimate galaxy sizes. We also simulate AO images of field galaxies to determine the feasibility of infrared morphological studies at the diffraction limit. With new high order AO systems coming on line with 8-10 meter class telescopes, we believe these observations are invaluable in beginning to study faint galaxy populations at the diffraction limit.Comment: 15 pages, Latex, 9 figures. Accepted for publication in P.A.S.

    Profiles of near-resonant population-imbalanced trapped Fermi gases

    Full text link
    We investigate the density profiles of a partially polarized trapped Fermi gas in the BCS-BEC crossover region using mean field theory within the local density approximation. Within this approximation the gas is phase separated into concentric shells. We describe how the structure of these shells depends upon the polarization and the interaction strength. A Comparison with experiments yields insight into the possibility of a polarized superfluid phase.Comment: 4 pages, 5 Figures, Published versio
    • …
    corecore